Нормы пожарной безопасности при установке систем утепления фасадов

Утеплители для стен бывают внутренними и наружными. В выборе утеплителя, который подойдет для стен дома, принято останавливаться на варианте наружного утепления. Но в ряде случаев наружные работы совершенно нецелесообразны, и тогда стоит подумать об утеплении здания изнутри. В каких случаях правильнее выбирать внутреннее утепление? Типы утеплителей для стен — какой из них выбрать?

Чем наружное утепление лучше внутреннего

Утепление домов в большинстве случаев должно быть наружным. Эта рекомендация содержится в своде правил по проектированию и строительству (СП 23-101-2004).

Проще всего это объяснить тем, что внутренне утепление отнимает у помещения свободное пространство, хотя это не главная причина. Утеплять дом изнутри не запрещено, но рекомендовано прибегать к этому только в исключительных ситуациях. Например, если особенная конструкция здания не позволяет утеплить снаружи.

Качественно утеплить дом изнутри можно только при создании паронепроницаемого слоя – сплошного и долговечного. Сделать это довольно сложно. Если теплый влажный воздух проникнет в утеплитель, то неминуемо образование конденсата. То же самое произойдет при соприкосновении воздуха с холодной стеной. При таком утеплении точка росы перемещается внутрь теплоизоляционного слоя или между ним и стеной.

Исходя из этих причин, рекомендации по утеплению практически всегда соответствуют нормативам – проводить утепление снаружи.

Зачем нужна теплоизоляция?

Актуальность теплоизоляции заключается в следующем:

  • Сохранение тепла в зимний период и прохлады в летний период.

Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

  • Увеличение долговечности конструкций здания.

В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.

  • Шумоизоляция.

Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

  • Увеличение полезной площади зданий.

Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

Какой лучше утеплитель для стен дома внутри выбрать

Для того чтобы выбрать утеплитель для стен внутри коттеджа, нужно отнестись к процессу максимально ответственно. Здесь нужно принимать во внимание все критерии каждого из теплоизоляторов, характеристики утеплителей для стен, а также сложность монтажа и вариативность отделки.

Несколько ключевых требований, на которые будет правильнее всего опираться в процессе выбора материала для внутреннего утепления стен:

  • Токсичный утеплитель для внутренних работ – это неприемлемо. Материал, используемый для утепления стен, должен быть экологичным, полностью безопасным для здоровья владельца. Теплоизотялор и во время воздействия не должен выделять каких-либо веществ, угрожающих здоровью и жизни.
  • Один из важнейших показателей – долговечность материала. Срок, который утеплитель, находящийся непосредственно внутри загородного дома, может пробыть в полной целостности, определяет то, насколько тепло и комфортно будет в доме.
  • Отсюда же и важность того, что материал должен легко переносить внешние повреждения. Если утеплитель не будет устойчив повреждениям и деформации, то, очевидно, что долго он не простоит.
  • Соответствие нормам пожарной безопасности.
  • Материал для внутреннего утепления стен в загородном доме не должен пропускать пар.
  • Важно, чтобы утеплитель стеновой для внутренних работ не впитывал пар и влагу.

Конечно, важнейшее, что может быть у утеплителя, – это изоляционные свойства. Чем они меньше, тем лучше соответственно. Помимо этих критериев важным считается факт сочетаемости материала утеплителя с тем, который использовался в возведении стен. Это правильно узнавать до покупки, так как толщина всегда будет зависит от исходных стен.

Цена и качество утеплителя должны быть выгодны и сопоставимы. Не стоит стараться сэкономить, укладывая утеплитель в два-три ряда. Поступая так, можно ограничить действие даже дорогого утеплителя. Чтобы не жалеть о выбранном утеплителе для стен внутри дома, правильнее обратиться за помощью к профессионалам, провести грамотные расчеты и только после этого устанавливать утеплитель. Правильно решив задачу утепления дома, можно на много лет огородить себя от проблем, жить и чувствовать себя комфортно.

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Тепловые потери дома

Необходимость расчетов

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Для определения тепловых потерь через любую конструкцию нужно знать сопротивление, которое вычисляется с помощью разницы температур и количества теряемого тепла, уходящего с одного квадратного метра ограждающей конструкции. И так, если мы знаем площадь конструкции и ее термическое сопротивление, а также знаем для каких климатических условий производится расчет, то можем точно определить тепловые потери. Есть хороший калькулятор расчета теплопотерь дома ( он может даже посчитать сколько будет уходить денег на отопление, примерно конечно).

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.

Натурные огневые испытания

Согласно нормам пожарной безопасности, если конструктивные системы здания невозможно отнести к какому-либо классу пожарной опасности или степени огнестойкости, для натурных фрагментов зданий нужно проводить огневые испытания в соответствии с требованиями НПБ 233.

Натурные испытания, позволяющие определить класс пожарной опасности, проводят в Челябинской области (г. Златоуст, испытательный полигон ЦНИИСК им. Кучеренко). Для их проведения есть с «Программа натурных огневых испытаний фрагментов фасадов зданий с дополнительной наружной теплоизоляцией», разработанная в 1997 г. ЦНИИСК им. В. А. Кучеренко Госстроя России совместно с ВНИИПО МВД России по заказу Госстроя России и при согласовании с Управлением технормирования Госстроя России и ГУГПС МВД России.

Согласно действующим нормативам огневых испытаний, системы теплоизоляции фасадов «мокрого типа» не имеют ограничений при использовании базальтового минераловатного (минимальная температура горения 1000 град.).

Фасадные системы на пенополистироле, которые относятся к классу пожарной опасности K0, при толщине утеплителя до 200 мм можно применять для утепления зданий, сооружений, которые относятся к любым степеням огнестойкости, всем классам функциональной или конструктивной пожарной опасности, имеют высоту до 75 м. Исключением являются здания класса функциональной пожарной опасности:

Ф1.1. (специализированные дома инвалидов (неквартирные), прстарелых, больницы, детские дошкольные учреждения, спальные корпуса детских учреждений, школ-интернатов)

Ф4.1 (средние специальные учебные заведения, внешкольные учебные заведения, школы, профессионально-технические училища).

  1. Фасадные системы Террако
  2. Технология создания наружной теплоизоляции фасадов
  3. Научно-технический отчет от компании Террако
  4. Техническое свидетельство на фасадные системы Террако
  5. Системы мокрых фасадов по технологии Террако

Требования к наружным утеплителям

Несмотря на то, что условия эксплуатации снаружи и внутри дома разительно отличаются, и в том, и в другом случае могут использоваться одни и те же материалы. Тем не менее, при выборе утеплителя отдавать предпочтение нужно тем вариантам, которые максимально отвечают следующим требованиям:

  • повышенная стойкость к усадке;
  • стойкость к механическим повреждениям;
  • стойкость к ультрафиолету;
  • долговечность;
  • легкость монтажа;
  • устойчивость к насекомым и микроорганизмам.
Читайте также:  Как крепить пеноплекс 20 мм к кирпичной стене и гипсокартона

Примеры утепления стен из кирпича и бетона

Для деревянных домов также имеет значение паропропускная способность утеплителя, ведь деревянные стены должны «дышать». Как правило, финишные покрытия для фасадов рассчитаны на длительную эксплуатацию, и снимать их каждые несколько лет, чтобы заменить пришедшую в негодность теплоизоляцию слишком хлопотно и не всегда целесообразно. В то же время, если утеплитель под отделкой спрессуется, потрескается, начнет гнить или его сгрызут мыши, удерживать тепло он уже не сможет, а значит, без ремонта обойтись не получится. Вот почему так важно, чтобы выбранный материал полностью соответствовал указанным критериям.

Утепление деревянного дома, схема

Часть Расчет минимально допустимой толщины стены на примере газобетона для Московской области.

Рассчитывая толщину стеновой конструкции, берем те же данные, что указаны в Части 1 настоящей статьи, но перестраиваем основную формулу: δ = λ·R, где δ – толщина стены, λ – теплопроводность материала, а R – норма теплосопротивления по СНиП.

Пример расчета минимальной толщины стены из газобетона с теплопроводностью 0,12 Вт/м°С в Московской области со средней температурой внутри дома в отопительный период +22°С.

  1. Берем нормируемое теплосопротивление для стен в Московском регионе для температуры +22°C: Rreq= 0,00035·5400 + 1,4 = 3,29 м2°C/Вт
  2. Коэффициент теплопроводности λ для газобетона марки D400 (габариты 625х400х250 мм) при влажности 5% = 0,147 Вт/м∙°С.
  3. Минимальная толщина стены из газобетонного камня D400: R·λ = 3,29·0,147 Вт/м∙°С=0,48 м.

Вывод: для Москвы и области для возведения стен с заданным параметром теплосопротивления нужен газобетонный блок с габаритом по ширине не менее 500 мм , либо блок с шириной 400 мм и последующим утеплением (минвата+оштукатуривание, например), для обеспечения характеристик и требований СНиП в части энергоэффективности стеновых конструкций.

Таблица 3. Минимальная толщина стен, возводимых из различных материалов, соответствующих нормам теплового сопротивления согласно СНиП.

Материал

Толщина стены, м

Тепло-

проводность,

Вт/м∙°С

Прим.

Керамзитоблоки

0,46

0,14

Для строительства несущих стен используют марку не менее D400.

Шлакоблоки

0,95

0,3-0,5

Силикатный кирпич

1,25

0,38-0,87

Газосиликатные блоки d500

0,40

0,12-0,24

Использую марку от D400 и выше для домостроения

Пеноблок

0,

0,06-0,12

строительство только каркасным способом

Ячеистый бетон

От 0,40

0,11-0,16

Теплопроводность ячеистого бетона прямо пропорциональна его плотности: чем «теплее» камень, тем он менее прочен.

Арболит

0,23

0,07 – 0,17

Минимальный размер стен для каркасных сооружений

Кирпич керамический полнотелый

1,97

0,6 – 0,7

Песко-бетонные блоки

4,97

1,51

При 2400 кг/м³ в условиях нормальной температуры и влажности воздуха.

Пример Теплотехнический расчет чердачного перекрытия

Определитьтолщину утеплителя для теплого чердакаиз условия энергосбережения.

Исходныеданные. Вариант № 40.

Здание– жилой дом.

Районстроительства: г. Оренбург.

Зонавлажности – 3 (сухая).

Расчетные условия

N п.п. Наименование расчетных параметров Обозначение параметра Единица измерения Расчетное значение
1 Расчетная температура внутреннего воздуха °С 22
2 Расчетная температура наружного воздуха °С — 31
3 Расчетная температура теплого чердака °С +5
4 Расчетная температура техподполья °С +2
5 Продолжительность отопительного периода сут 202
6 Средняя температура наружного воздуха за отопительный период °С — 6,3
7 Градусо-сутки отопительного периода °С·сут 5717

Конструкция ограждения

Плитажелезобетонная – 150мм: δ1= 0,15м; λ1= 1,92 Вт/м∙0С

Пароизоляция(поливинилхлоридная пленка)

УтеплительStyrodur – 2500: δ3= ? м; λ3= 0,031 Вт/м∙0С

Слойцементно-песчаного раствора – 20мм: δ4= 0,02м; λ4= 0,7 Вт/м∙0С

Ходовыедоски – 30 мм. δ5= 0,03м; λ5= 0,14 Вт/м∙0С

Читайте также:  6 видов дюбелей для газобетона — правила выбора и применения

сопротивление теплопередачеперекрытия теплого чердака ,м·°С/Втопределяют по формуле:

где: — нормируемое сопротивление теплопередачеперекрытия, определяемое по таблице 4СНиП 23-02-2003 в зависимости от градусо-сутокотопительного периода климатическогорайона строительства;

-коэффициент, определяемый по формуле:

, — то же, что и в формуле (1);

-расчетная температура воздуха в чердаке,0С,устанавливаемая по расчету тепловогобаланса для 6-8-этажных зданий 140С,для 9-12-этажных зданий 15-16 0С,для 14-17 этажных зданий 17-18 зданий ниже 6 этажей чердак, какправило, выполняют холодным, а вытяжныеканалы из каждой квартиры выводят накровлю.

–сутки отопительного периода

Dd= (tint– tht)zht

Dd= (22 + 6,3) 202 = 5717°С∙сут

значение сопротивлениятеплопередаче, Rreq,табл. 4.

Rreq= a∙Dd+b = 0,00045∙5717 + 1,9 = 4,47 м2∙0С/Вт

Rgf= n∙Rreq= 0,31∙4,47 = 1,38 м2∙0С/Вт

толщину утеплителя определяемиз условия Rgf₀= Rgf

Rgf0=Rsi+ΣRк+Rse=1/αint+Σδ/λ+1/αext= Rgf

δут= [Rgf– (1/αint+Σδ/λ+1/αext)]λут= [1,38 – (1/8,7 + 0,15/1,92 + 0,02/0,07 + 0,03/0,14 +1/12)]∙0,031 = [1,38 – (0,11 + 0,08 + 0,28 + 0,21 + 0,08)]∙0,031= (1,38 – 0,76)∙0,031 = 0,019м

Принимаемтолщину утеплителя 0,02м.

приведенное сопротивлениетеплопередаче, Rgf₀,с учетом принятой толщины утеплителя

Rgf0= 1/αint+Σδ/λ+1/αext= 1/8,7 + 0,15/1,92 + 0,02/0,031 + 0,02/0,07 + 0,03/0,14 + 1/12 =1,40 м2∙0С/Вт

проверку конструкции наневыпадение конденсата на внутреннейповерхности ограждения.

Температурувнутренней поверхности τsiперекрытия следует определять по формуле

τsi= tint- [n(tint– text)]/ (Rgfоαint)= 22 — 0С

где: tint– расчетная температура воздуха внутриздания;

text- расчетная температура наружноговоздуха;

n– коэффициент, учитывающий зависимостьположения наружной поверхностиограждающих конструкций по отношениюк наружному воздуху и приведенный втаблице 6.

конструкции техническихподвалов

Техническиеподвалы (техподполье) — это подвалы приналичии в них нижней разводки трубсистем отопления, горячего водоснабжения,а также труб системы водоснабжения иканализации.

Расчетограждающих конструкций техподполийследует выполнять в приведеннойпоследовательности.

1).

Нормируемое сопротивление теплопередаче ,м·°С/Вт,части цокольной стены, расположеннойвыше уровня грунта, определяют согласноСНиП 23-02-2003 для стен в зависимости отградусо-суток отопительного периодаклиматического района этом в качестве расчетной температурывнутреннего воздуха принимают расчетнуютемпературу воздуха в техподполье ,°С, равную не менее плюс 2°С при расчетныхусловиях.

2).Определяют приведенное сопротивлениетеплопередаче ,м·°С/Вт,ограждающих конструкций заглубленнойчасти техподполья, расположенных нижеуровня земли.

Длянеутепленных полов на грунте в случае,когда материалы пола и стены имеютрасчетные коэффициенты теплопроводности Вт/(м·°С),приведенное сопротивление теплопередаче определяют по таблице 10 в зависимостиот суммарной длины ,м, включающей ширину техподполья и двевысоты части наружных стен, заглубленныхв грунт.

Таблица10

Нужна ли внутренняя пароизоляция?

Необходимость внутренней пароизоляции несомненна. Практически весь смысл внутреннего утепления — создание герметичной границы между насыщенным паром воздухом и стеной.

При этом, если утеплитель сам по себе хороший пароизолятор (как ППС или ЭППС), то наличие отдельного слоя рулонной пароизоляции необязательно, особенно если имеется эффективная приточно-вытяжная вентиляция.

Нужна ли внутренняя пароизоляция?

Тем не менее, для страховки от возможных микроскопических щелей, зазоров или иных полостей в утеплителе, а также для отсечки примыкающих стен часто устанавливается дополнительный слой парозащиты.

Если в качестве утеплителя используется более рыхлый материал, пропускающий пар, то наличие полноценной пароизоляции обязательно. Попытки обойтись без нее сведут на нет всю затею с утеплением стены — она намокнет, конденсат пропитает утеплитель, отчего он перестанет удерживать тепло, превратится в аккумулятор влаги. В это время, материал стены будет мокнуть, обмерзать и от этого активно разрушаться.

Внутреннее утепление значительно проигрывает в эффективности наружному способу, и используется лишь как дополнительная мера. В качестве самостоятельного мероприятия такая методика сомнительна и требует понимания динамики процессов, протекающих в стеновом пироге при разных температурах и в разное время года.

Стеновой пирог

Нужна ли внутренняя пароизоляция?

Эффект от такой методики зачастую требует множества экспериментов и изменений, что на практике означает постоянный ремонт. Поэтому следует действовать очень осмотрительно и тщательно, чтобы постараться достичь нужного результата с первой попытки.

ВконтактеFacebookTwitterGoogle+Одноклассники

Можно ли обойтись без его использования

Обойтись без утеплителя можно только в редких случаях:

  • климат тёплый и засушливый, внутри помещений можно создать оптимальный микроклимат без использования или с редким использованием климатической техники;
  • толщины стен достаточно, чтобы обеспечить качественную теплоизоляцию, то есть основной стеновой материал выполняет роль утеплителя;
  • здание нежилое, поэтому обеспечивать оптимальный микроклимат внутри него не требуется.

Важно! В жилых домах от утеплителя можно отказаться в том случае, если использовать современные материалы для строительства, которые обладают достаточным уровнем теплоизоляции, например, пеноблоки. Однако при этом стоит понимать, чтобы достичь оптимального уровня утепления, потребуется сделать толще стены. Что по финансам выйдет дороже.